Data Engineering¶
Giriş¶
Data Engineering, modern software systems'de data pipeline design, data warehousing ve data processing için kritik öneme sahiptir. Senior-level developers için data engineering konularını anlamak, data pipelines tasarlamak, data warehouses kurmak ve real-time processing implement etmek için gereklidir. Bu bölüm, data pipeline design, data warehousing, real-time processing, data governance ve data quality konularını kapsar.
Kapsanan Konular¶
1. Data Pipeline Design¶
ETL/ELT processes, data flow design, ve pipeline orchestration.
Öğrenilecekler: - ETL/ELT processes - Data flow design - Pipeline orchestration - Data transformation - Pipeline monitoring
2. Data Warehousing¶
Data warehouse design, data modeling, ve data storage strategies.
Öğrenilecekler: - Data warehouse design - Data modeling - Data storage strategies - Data partitioning - Data indexing
3. Real-Time Processing¶
Stream processing, real-time analytics, ve event processing.
Öğrenilecekler: - Stream processing - Real-time analytics - Event processing - Real-time pipelines - Performance optimization
4. Data Governance¶
Data quality, data lineage, ve data security.
Öğrenilecekler: - Data quality - Data lineage - Data security - Data catalog - Data policies
5. Data Quality¶
Data validation, data cleansing, ve data monitoring.
Öğrenilecekler: - Data validation - Data cleansing - Data monitoring - Quality metrics - Quality improvement
Neden Önemli?¶
1. Business Intelligence¶
- Data-driven decisions
- Business insights
- Performance analytics
- Trend analysis
- Competitive advantage
2. System Integration¶
- Data consistency
- System interoperability
- Data synchronization
- Real-time updates
- Operational efficiency
3. Compliance & Security¶
- Data governance
- Regulatory compliance
- Data security
- Privacy protection
- Risk management
4. Technical Excellence¶
- Scalable architecture
- Performance optimization
- Data reliability
- System maintainability
- Continuous improvement
Mülakat Soruları¶
Temel Sorular¶
- Data engineering nedir?
-
Cevap: Data pipeline design, data processing, data warehousing, data governance.
-
ETL nedir?
-
Cevap: Extract, Transform, Load - data integration process.
-
Data warehouse nedir?
-
Cevap: Centralized data storage, optimized for analytics and reporting.
-
Real-time processing nedir?
-
Cevap: Stream processing, real-time analytics, immediate data processing.
-
Data governance nedir?
- Cevap: Data quality, data lineage, data security, data policies.
Teknik Sorular¶
- Data pipeline nasıl tasarlanır?
-
Cevap: Source identification, transformation logic, target design, monitoring setup.
-
Data warehouse nasıl optimize edilir?
-
Cevap: Data modeling, partitioning, indexing, query optimization.
-
Real-time processing nasıl implement edilir?
-
Cevap: Stream processing framework, event handling, performance optimization.
-
Data quality nasıl sağlanır?
-
Cevap: Validation rules, cleansing processes, monitoring, quality metrics.
-
Data governance nasıl kurulur?
- Cevap: Policies definition, data catalog, lineage tracking, security measures.
Best Practices¶
1. Data Pipeline Design¶
- Design for scalability
- Implement error handling
- Monitor pipeline health
- Plan for failure recovery
- Document data flow
2. Data Warehousing¶
- Use proper data modeling
- Implement partitioning
- Optimize queries
- Monitor performance
- Plan for growth
3. Real-Time Processing¶
- Design for performance
- Handle backpressure
- Implement error handling
- Monitor latency
- Plan for scaling
4. Data Governance¶
- Define clear policies
- Implement data catalog
- Track data lineage
- Ensure security
- Monitor compliance
5. Data Quality¶
- Define quality metrics
- Implement validation
- Monitor quality
- Clean data regularly
- Plan for improvement